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Complex energy eigenvalues of a zero-range atom in a 
uniform electric field 

T B Scheffler and J B Malherbe 
Department of Physics, University of Pretoria, Pretoria 0002, South Africa 

Received 9 December 1977, in final form 17 November 1978 

Abstract. Simple yet accurate approximate formulae for the physically interesting complex 
eigenvalues for a delta function well plus linear potential are presented, and their results 
compared with numerical results accurate to twelve significant figures. By a semiclassical 
analysis we suggest and confirm the correct physical interpretation of states above the top of 
the well, and show that contrary to widely held views, in certain potentials with isolated real 
singular points the higher states have a longer lifetime than lower ones. The position 
probability density and the phase of the wavefunction are graphically displayed, as are 
numerical results for dimensionless electric field intensities from lo-’’ to beyond 

1. Introduction 

It is well known that when an atom is placed in a uniform external electric field, its 
energy eigenvalues are no longer real and discrete. If a boundary condition of purely 
outgoing waves at large distances from the atom is imposed, the eigenvalues remain 
discrete but become complex. The complete determination of these Siegert eigen- 
values has only been done for a few simple models of an atom in a zero field (e.g. 
Nussenzveig 1959, Romo 1974 etc). It is obvious that there will be differences between 
the properties of the quasi-stationary (or decaying, or Siegert, or resonant) states for 
this case and for that of a non-zero field. 

Potentials containing delta functions have been used in many physical applications, 
whenever a short range potential must be approximated. For instance, in nuclear 
physics they are used to approximate short range exchange potentials; in molecular 
physics, the potential of each atom in a one-dimensional model of a molecular ion can 
be approximated by a delta function if the interatomic distance is large, i.e. in the limit 
of small overlap of the atomic wavefunctions. 

The usual treatment of multiphoton ionisation is by means of perturbation theory 
where the electromagnetic field is taken as the perturbation. It is therefore not 
surprising to find this treatment inaccurate in the case of very strong fields. However, 
Peierls (1967, private communication) suggested an alternative treatment which might 
be more accurate in the case of very strong electric fields, i.e. where a linear potential 
with a simplified atomic potential is taken as the potential of the unperturbed system. 
The difference between the simplified and a more realistic atomic potential is then taken 
as a perturbation. Herrick and Stillinger (1974) have shown by a procedure of 
dimensionality scaling (in which the dimensionality of a problem is treated as a 
continuous parameter) that the strict one-dimensional analogue of a three-dimensional 
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Coulomb potential is a delta function, and that this property carries over to two- 
electron atoms. 

From these considerations, it is of some interest to investigate the properties of the 
quasi-stationary states of the one dimensional Schrodinger equation with a linear 
(electric field) part together with an attractive delta function (representing an atomic 
nucleus) at the origin. Scheffler (1970, 1979) and Moyer (1973) both considered this 
case, constructed (via several different methods) the Green function, and discussed its 
analytic behaviour. Both have suggested that the discrete complex energy states form a 
complete set, but closer examination (Scheffler 1979) indicates that the picture is not 
quite so simple. 

In 0 7 we show that a semiclassical argument gives the relation between the 
transmission coefficient and the real and imaginary parts of the complex energy 
eigenvalue to high accuracy (eight significant figures or more in weak fields). Using the 
same semiclassical argument, we discuss a remarkable result of the exact computations: 
the higher the energy of a quasi-stationary state lies above the well, the longer its 
lifetime will be. The basic reason for this phenomenon is that for states high above the 
well, variations in the semiclassical period of a particle 'oscillating' between reflections 
at the well and the classical turning point are much stronger than variations in 
transmission coefficient above the well. For this as well as a multitude of non-analytic 
potentials (with discontinuities in the potential or in some derivative of the potential) 
the transmission coefficient varies slowly with energy (the reflection coefficient tending 
to zero only with a power of the energy), while the semiclassical period of oscillation will 
in general increase if, in the oscillation region, the potential varies substantially more 
slowly than in a harmonic oscillator. Lifetimes of states with energy high above the 
potential 'discontinuity' will then increase with increasing energy. 

2. Eigenvalue equation 

We choose s, % and 4 to denote the displacement, electric field intensity and charge in 
our one-dimensional model. The Schrodinger equation 

h2 d2+ 
2m ds2 

-+ V+ =E+,  -- 

with potential 

V ( s )  = 48s - P S ( s ) ,  ( 2 )  
and our further discussion can be simplified by changing to dimensionless variables 
5, z = x  + iy, E ,  A, F, s / l  and t / r :  

5 = y ( E  +q%) 5 z + 2s / (AI)  

y = (2m)' /3(hq8)-2 /3  = (2 /F2) ' /3 ( r /h ) .  

The variable 

(3) 

(4) 

( 5 )  z = yE = x + i y  = i A  ' E  = e(2/F2)'I3 

is a mathematically convenient energy parameter, whereas 

E = h2E/(mP2) = 2z/A2 = (F2/2)' l3z  = TE/h (6 )  
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is a parameter proportional to E, with proportionality independent of the electric field 
intensity 8. Likewise, 

A = = (4/F)1’3 (7) 

is a mathematically convenient parameter characterising the electric field intensity, 
while 

F=h4q8/(m2p3)=4/A3 (8) 
is a dimensionless field strength proportional to $. Also 

I = h2/(pm) (9a)  
is a characteristic length, and 

r = h3/(mp2) (9b) 
a characteristic time. 

Using (3) with 6 ( a x )  = /a l - ’S(x) ,  the Schrodinger equation (1)  becomes 

Although the energy E and variables 5 and z will be permitted complex values, the 
position s and likewise the argument of the delta function will always be real. 

For 5 # z ,  (10) reduces to the Airy equation (Abramowitz and Stegun 1964). The 
solution 

U&) = Ai(-5) (11)  
represents standing waves, and also satisfies the correct physical boundary condition on 
the left: 

uo(()+O as s+-co. 

For s > 0, the solution 

U+(&) =&(Ai(-[)-i Si(-,$)) (12) 
= exp(-i.n/3)Ai(-( exp( i2~ /3 ) )  

= (12)-1’2 exp( i~ /6)5~’~H\ : \  (2[3’2/3) 

represents outgoing waves at positive distances. In fact, by constructing an arbitrary 
wave packet from functions U + ( ( )  with different energies E and using the asymptotic 
formula (196) the group velocity is readily calculated to be 

U - +[(2/m)(E- V ( S ) ) ] ” ~ =  +[(2 /m)(E+qkf~)]”~ ,  
for Re 5 >> 1.  

discontinuity given by 
At 5 = z (i.e. s = 0), the wavefunction $ is continuous, while $’e d4/dz has a 

(15) $’(z’) - $ ’ ( z - )  = - A $ ( z ) .  

u0(z )u+ (z )  = A - ’ W ( u + ( z ) ,  U O ( Z ) )  = 1/(27rAi). 

The eigenvalue condition then easily follows: 

(16) 
The value of the Wronskian W used in the last step, and the equivalence of expressions 
(12)-(14), follow from Abramowitz and Stegun (1964). 
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3. Real energy solutions 

From a physical viewpoint it is obvious that no fmite bound state solutions can exist for 
finite p and q 8  # 0, since tunnelling to s + 03 is always possible. In a potential which 
tends to zero as s -+ 03, the conditions for a real energy quasi-stationary state and for a 
bound state are formally identical, as the outgoing and bound state boundary conditions 

(I - exp(iks) and (I - exp(-Ks) 

are analytic continuations of each other. This is no longer true when 
s-m 

V ( s )  - - q8s 

where a bound state boundary condition is inconceivable. 
We now investigate whether real energy quasi-stationary states are possible under 

any circumstances. 
By assumingE to be real and taking the complex conjugate of the (real) Schrodinger 

equation and the real boundary condition on the left, it is clear that if (I satisfies these, 
(I* will, too. Hence sl, and (I* are linearly dependent, so that (I must be some (possibly 
complex) constant multiplied by a real function. It is clear that no such (I can satisfy an 
outgoing (and hence complex) boundary condition on the right. Hence strictly real 
energy quasi-stationary states cannot occur under any circumstances. 

If we now repeat our investigation for the present special case, merely by consider- 
ing the eigenvalue condition (16), then with E real, z = yE = x. For real argument x, the 
Ai and Bi functions are real. Using (11-12), (16) becomes 

Ai’(-x)-i Ai(-x)Bi(-x) = (imA)-’. 

The real part of this equation gives Ai(-x) = 0, whence the imaginary part is only 
satisfied if Bi(-x) + 03, i.e. if x + -CO; or if A + 03. No finite real quasi-stationary states 
are possible, except apparently in the limit A +CO (i.e. when the electric field ‘i$ -+ 0) 
which we now investigate. 

4. Weak electric field 

The limit 

A = (4 /F) ’ l3  = ( 4 m ’ / f 1 ’ q 8 ) ’ / ~ p  + 03 

implies that either the coefficient p of the delta potential becomes large, or the electric 
field 8 becomes small (F << 1). Moyer (1973) showed that since 

z = YE = (A ’/2)e, 

this implies that either ( a )  ) z  1 -+ 03 while E and e remain finite, or ( b )  z remains finite 
while E and e -+ 0. From (16) and (17) it follows that in case ( b ) ,  z must approach a finite 
zero an of U&), or a finite zero b,, of u+(z) .  The zeros a, are real and positive, whereas 
by (11) and (13) b, = a,, exp(-2?ri/3). Hence we label solutions of (16) according to 
their behaviour for large A (i.e. small F ) :  

F+O 
z - ,  - b, = a, exp(-2mi/3) 
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(18c) 2 F+O 
z o = y E o = l  2A - -ym@ /2h2 = -(A/2)’. 

In all cases, the corresponding E+,,  and E,, follow from ( 5 )  or (6). Case ( a )  above yields 
20, EO = -mp2/(2h2)  and EO = -4 which correspond to the single bound state of a pure 
delta potential. The last part of (18a) followsfrom the asymptotic formula (19a) below. 

5. Numerical results 

Newton’s method can be readily applied to solve the complex non-linear eigenvalue 
condition (16). One may, for instance, select a very small field F and use (18)  to start the 
iteration, which converges stably and rapidly. Successively doubling F (or even 
multiplying by factors as large as ten) and using the previous eigenvalue z (or an 
extrapolate from the previous few eigenvalues) as initial guess for the present z ,  one can 
rapidly generate the results shown in figures 1 to 3. For those states zn for which n > 0, 
an even simpler and more efficient method is to use the procedure outlined below 
equation (236) to obtain starting values for Newton’s method. In this manner, isolated 
eigenvalues are readily obtained. The neat symmetry of the eigenvalues in the z plane is 
distorted when transformed to the E = (F2/2)”3z plane because different parts of each 
curve correspond to different values of F. The (isonodal) curves obtained by continu- 
ously varying F = 4 / h  can of course not cross at any point where F has the same value 
on both. For the states t, or E,, with n L 0, each solid curve of quasi-stationary energy 

X 

a=oi- 
A Z O  01 

Figure 1. The complex z = yE plane of eigenvalues. The full curves are adiabatic invariant 
or isonodal curves, with nodal quantum numbers from -21 to +17.  The intersection points 
with broken curves are eigenvalues for a specific potential, i.e. for given A = (4/F)”3. The 
line arg z = -2.n/3 is also indicated. 
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Figure 2. The complex eigen- 
values c = ( h 2 / m p Z ) E  when the 
dimensionless field F is ( a )  small, 
( b )  near 1, and (c) large. Full and 
broken curves have the same 
meaning as in figure 1. Broken 
curves are in fact graphs of equa- 
tion (226). 

eigenvalues corresponds to a wavefunction with n quasi-nodes (see figure 3 ) ,  and may 
accordingly be called an isonodal curve. Or since each curve is obtained by continu- 
ously varying a parameter F in the potential, it may be termed an adiabatic invariant 



Complex energies 1017 

n-1 

2 -10 

2 -10 

n=l 

1 

t 
I 
I 

n=1 I 
F. 2 -3 

I 

i 
-10 

n - 6  
f.2-9 

n=6 A 
Fz2-6 ‘ 

/* 
1 -30 -20 -10 

1 -30 -20 -10 

-1 0 -20 -30 

-10 -20 
- 
1 -30 

Figure 3. The modulus square and phase 4 of the complex energy eigenfunctions, for nodal 
quantum numbers n = 1,6 and 20 and dimensionless field intensities 2-9, 2-6 and 2-3. The 
distance is measured in units of I = hz/pm. As indicated also by equation (3), length scales 
as A, i.e. as F-”3. The phase increases by P in the neighbourhood of each quasi-node. 
Relative normalisation is such that J!a / @ I 2  dx remains constant. 

curve. For convenience, we also designate the corresponding z-” and E-, curves 
isonodal or adiabatic invariant. The dashed curves connect the various solutions for 
given F = 4/A ’. Their individual shapes (to be discussed in 0 7) are hence the same in 
the z and E planes. 

6. Approximate formulae for eigenstates near the positive real axis 

From the first terms of equations (10.4.59-60) in Abramowitz and Stegun (1964) we 
obtain asymptotic formulae valid for 121 >> 1: 

(19a) 

(19b) + z - 277 z exp(i7) when - 2 ~ 1 3  arg z c 4713. 

Here .rl= 5 ~ ~ ’ ~ -  ~ / 4 ,  and (13) was used in (196). With these, the eigenvalue condition 
(16) becomes 

-1/2 -1/4 
U&) = T z cos 77 when larg Z I  e 2 4 3  

( -1. - 1 / 2  -1/4 

the eigenvalue condition becomes exp(u + iu) + i = 22 1/2/A = 2x1/’/A. Real and 
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imaginary parts give 

eu  cos U = 2x1/'/A, e' sin U =-1. ( 2 1 ~ ~  b) 

Squaring and adding: 

e'" = 1 + 4x/A ', 

i.e. 

- 2u/4x = y = -( 1/4x 'I2) In( 1 + 4x/A ') (22Q) 

or 

Im(e) = [-F/4(2Re(r))'/'] ln(1 + 2 Re(€)). 

From (21b, c and a ) ,  

sin v = sin($x3/') = -e-' = -(1 + ~ x / A ~ ) - ~ / ' ;  cos U > 0. 

By sketching the graphs of  sin($^^/^) and -(1 + ~ X / A ~ ) - ' / ~  and discarding solutions for 
which cos U < 0, it is easy to see that if z ,  = x, + iy, is a solution, then 

$x" ,~  = 2 n r  - S ,  

with S ,  = sin-'(l + ~ x , / A ' ) - ~ / ' ,  so that 

( 2 3 ~ )  

(236) 

Taking S ,  = 0 or 8, = r / 2  in zeroth approximation in (23a) and iterating (this can be 
easily programmed even on a pocket calculator), one rapidly obtains convergence for 
x,; yn then follows from (22a). Table 1 compares results so obtained with results 
obtained by numerically solving the exact condition (16)-the latter are correct to at 
least twelve decimal places. On retaining next higher order terms, one obtains 

x, =[(3nr/2)-~sin-'( l+4xn/A 2 ) -1/2 ] 2 / 3  

or 

Re(€,) =f[3{nr -f sin- '( l+ 2 R ~ ( E , , ) ) - ~ / ~ ) F ] ~ / ~ .  

) + A x ' / ' .  4 3 / 2 - l  2 -1/2 y = 2x tan(gx sy x 

When solving this and (22a) simultaneously, and retaining only solutions for which 
cos U > 0, one obtains further improvement in accuracy. Despite its simple derivation 
(22a, b )  is thus remarkably accurate over a wide range of F, and will be further discussed 
below. 

Other approximate formulae may be derived by expanding uo(z)u+(z)  in a Taylor 
series around c,. For n > 0, the formula 

2, =c, +A- ' -~CL '~A-~+O(A-~)  (24) 

is everywhere accurate to at least three significant figures for all A 3 10 ( F  s 0.004), and 
to at least four significant figures if also n > 1. The imaginary part, for such small F, is 
much smaller than the real part, and often comparable in size with the error in z ,  so that 
it is not given nearly as accurately by (24) as by (22). The formula 

z ,  =c, - ~ ~ ~ " ~ [ - 1 + ( 1 + 4 i c ~ ~ * / A ) ' ' ~ ]  (24a) 

yields some improvement over (24). 
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Table 1. Eigenvalues E and z = x + iy near the positive real axis. Values given are accurate 
to twelve or more significant digits in the complex quantities E and z ;  whenever the 
imaginary part (second column) is a few orders smaller than the real part, its number of 
significant digits is correspondingly reduced. The last two columns compare the approxi- 
mate results z ,  = x. + iy, obtained by the method described below equation (236) with the 
accurate results: A value XR = +2.1 indicates a relative error ( x  - x . ) / x  of +lo-*”, 
whereas YR = -2.5 indicates a relative error ( y  - y,)/y = Thus the magnitudesof 
XR and YR give approximately the number of significant figures yielded by the approxi- 
mate formulae (22a, b )  and (23a, b ) ,  and the sign of XR gives the sign of the error. 

N F  E Z XR YR 

lo-’ 0.000001856257 -0~000000000000 2.33873741038 -0~00000061317 2.1 
0.000186075964 -0~000000004877 2,34441023334 -0.00006144667 2.1 

lo-’ 0.019054246118 -0.000048923491 2.40068457738 -0.00616397361 2.1 
1 1 2,130370150393 -0.205644918777 2.68409819655 -0.25909636197 2.4 

lo3 225.0665064115 -72,13983705305 2.83566029054 -0.90890499239 1.9 
lo6 23429.51179447 -12379.55140694 2,95193350986 -1.55972574059 1.3 
lo9 2464631.980756 -1720354.634256 3.10524171280 -2.16751101698 1.0 

0~000007160769 -0~000000000001 9.02200320360 -0.000001 19204 -13.8 
0.000716526717 -0~000000009460 9.02767093096 -0~00011919413 -9.9 
0.072081265905 -0.000088943188 9.08167042174 -0.01120613947 -6.0 

6 1 7.332637993889 -0.180024918949 9.23854495976 -0.22681718489 -4.3 
lo3 736,6421892487 -47.53627777989 9.28111000475 -0.59891957009 3.3 
lo6 73795.10513137 -7745.498578316 9.29760063342 -0.97587167008 2.7 
lo9 7395829,150694 - 1072909.5 18000 9.3 18 16082839 - 1.35 178 128636 2.4 

0~000016300796 -0~000000000001 2033771593024 -0.00000179847 -14.2 
0.001630529090 -0~000000014255 20.54337922337 -0.00017960641 -10.2 

lo-’ 0.163457424664 -0.000123819734 20.59434500954 -0.01560030897 -6.4 
20 1 16.42245864978 -0.153697962121 20.69100134389 -0.19364729780 -5.7 

lo3 1643.700225831 -35.31213422923 20.70932414241 -0.44490501232 4.2 
lo6 164406.0656938 -5538,365661509 20.71386628980 -0.69779034790 3.7 
lo’ 16444203.12571 -754518.3611735 20.71839766683 -0.95063356577 3.4 

1.9 
1.8 
1.6 
1.7 

-2.5 
-1.6 
-1.3 

4.5 
3.5 
2.5 
2.6 
3.8 

-3.1 
-2.7 

4.8 
3.8 
2.9 
3.3 
4.5 

-4.1 
-3.7 

7. Semiclassical treatment of eigenvalues near the positive real axis 

From (22)-(23) it follows that whenever 

4x/h2<< 1, i.e. Re(€)<< 4 or ( 2 F ) 2 ’ 3 ~  << 1, 

(that is, in weak fields, when the real part of the energy is much less than the modulus of 
the bound state energy in a pure delta potential), 

x ,  - [ l ( n  -:)TI C, 

y ,  - X y 2 / A  2. ( 2 2 c )  

( 2 3 c )  2/3  - 
and 

In view of (18a), these also follow from (24)  or ( 2 4 a ) .  With ( 6 ) ,  they give 

(26)  
so that as F -+ 0 (weak field) the imaginary parts of E, E and z tend to zero much more 
rapidly than the real part, and the eigenvalues become almost real. Here, as elsewhere 
in the paper, we reserve the symbol - to denote asymptotic approximations dependent 

7E,/h = E ,  - r [3 (n  1 - & ~ F ] ~ ’ ~ - $ [ 3 ( n  - + ) T I  1/3 F 4 / 3  
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on condition (25).  We now show that quasi-stationary states corresponding to these 
eigenvalues describe a particle that oscillates between a classical turning point at 
position 

stp = -Re(E)/q8 = (-1 Re(e)/F) == - [3 (n  -a)r]2/31/2F1/3,  (27)  

and the delta potential well at the origin (s = 0).  With the energy becoming almost real 
for small F, we consider the following semiclassical argument, which is certainly valid at 
least when the quantum number n is large: 

The velocity U of the particle incident on the delta potential at s = 0 follows from 
$mu2 = E K E  a F2l3.  With U proportional to F1l3  tending to zero with F, and the delta 
discontinuity in the potential unchanged, we may reasonably expect the transmission 
coefficient T to tend to zero with F. An exact calculation for real E shows that when 
z = x > > l  

Provided that T << 1 (which is ensured by (25) ) ,  the decay probability per unit time 
equals the transmission probability through the delta potential well divided by the 
semiclassical period P; it also equals - (2 /h)  Im(E) = T/h. Therefore 

(29)  r = -2 Im(E) - hT/P - h(2F)2/3x/P.  

The period P of a classical particle oscillating between stp and s = 0 is given by 

/Stpl = $a (W, 
with a = q8/m = Fmp3/h4  the uniform acceleration. With (27) ,  this yields 

Substituting this and (23c)  in (29) ,  we obtain exactly the same Im(E,) as in (26) ,  which 
for F < lo-’’ is accurate to eight significant figures when n 3 6.  

From ( 2 2 a )  we note that for x > A 2 / &  i.e. 

Re(€) > -$, ( 2 5 ~ )  
dy/dx > 0, i.e. for constant F the modulus of the imaginary part of the energy decreases 
as n increases. (For Re(€) < -$ this is not true; in fact when (25) holds, (22c)  follows.) 
This behaviour is also evident from figure 1. 

This somewhat surprising result implies that the lifetime increases with increasing 
energy above the top of the delta potential well at s = O! It results from the linear 
variation in the potential V ( s )  in the region where the particle oscillates between St, 
and s = 0, and from the non-analytic delta ‘discontinuous’ behaviour of V ( s )  at s = 0. 
The latter produces a variation of the transmission coefficient T (first part of (28)) 
against energy, which under condition ( 2 5 a )  is slower than the variation of the 
semiclassical period P (which is proportional to (Re(E))*/’). 

We have also found (Malherbe 1976) that the effect of a potential step (or even a 
mere discontinuity of slope) rather than a delta potential well at s = 0 will produce 
similar results-these results with certain others for a variety of potentials are intended 
for publication hereafter. The mentioned property is independent of whether the 
potential on the right (in the outgoing wave region) is linear or constant. A semiclassical 
analysis similar to the above would suggest that for any potential with a discontinuity in 
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some derivative (in the present case, the 'derivative' is of order -1; it could also be of 
order zero), and such that the semiclassical period increases with real energy as E", with 
a positive, high-energy resonant states above the discontinuity would have lifetimes 
increasing as E" multiplied by a logarithmic factor. In particular, if in the region of 
semiclassical oscillation the potential V ( s )  is proportional to some positive power less 
than two of the coordinate, this behaviour can be expected for states high above the 
discontinuity. 

Indeed, Newton (1960) quotes a result for a = -t (corresponding to a semiclassical 
period decreasing with energy E). For high-order (n >> 1) resonant states the effects of a 
discontinuity in the mth order derivative of the radial potential at position r = R are 
that the poles of the Green function are at 

E ,=h2k2/2m with Rk=-nr r+$i (m+2) lnn .  (26a 1 
This is in striking similarity to (18a) and (226), which like (28) shows that for real E << 1, 
the delta function potential well acts as an almost impenetrable barrier; although (226) 
and (236) show that to lowest order, the formula for E,, is not overly much affected when 
T becomes comparable to 1. Now (26a) suggests, and our own exact results on various 
potential models confirm, that discontinuities in the potential, or some derivative of it, 
have an effect similar to that of a delta function well. 

The states z - ,  of (186) have imaginary parts exceeding their real parts and far 
exceeding the differences between their real parts. They cannot contribute any sharp 
resonances, and apart from having very short lifetimes they do not appear to have a 
simple physical interpretation (Nussenzveig 1959). 

8. Asymptotic formulae for the 'ground state' eigenvalue 

As already discussed in 0 4, case (a), the state obtained by applying an electric field to 
the ground state of a pure delta potential corresponds to z tending to --CO as F tends to 
zero. Hence we use the formulae (10.4.59) and (10.4.63) from Abramowitz and Stegun 
(1964) together with (11) and (12) in (16), and obtain 

(Ai) - '  = 27ru0(z)u+(z) = $ ( - z ) - " ~ { $  e ~ p ( - $ ( - z ) ~ / ~ ) A ~  - iAB} 

-2 ={$A[AB +$ i exp( -$( - -~)~ '~)A~]}~ 
or 

where 
m m 

3/2 -k and B=Cck[$ ( -z )  ] 3/2 - k  A ck[-$(-z) ] 
0 0 

are asymptotic series, with ck defined in (10.4.58) of Abramowitz and Stegun (1964). 
To zeroth order in F, one sets A = B = 1 and ignores the exponentially small second 

term in (31), to obtain -zo = A  /4, E = -f, the ground state in a pure delta potential. 
Iterating with (31), one obtains 

2 

00 

-4z0= [A2+iA2 exp(-A3/6)]( 1 +c dnA-3") 
1 

i.e. 
m 

~0=[-:-$exp(-2/3F)][ l + c  1 dn(F/4)"]. 
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Ignoring for the moment the last factor in (32) (an asymptotic series), we note a striking 
similarity between Im(Eo) and the approximate formula w = 4F-’ exp(-2/3F) for the 
decay rate of a hydrogen atom in an electric field (Landau and Lifschitz 1965). In view 
of the already noted analogy between the three-dimensional hydrogen atom and the 
one-dimensional delta potential (Herrick and Stillinger 1974), this is perhaps not 
surprising. 

The result (32) was obtained in 1970 by Brown (1978, private communication) who 
investigated whether Rayleigh-Schrodinger perturbation theory gave the correct series 
expansion for Re(Eo), and compared the perturbation series with (32). 

Great care is, however, needed in handling asymptotic series. For instance, on using 
for u+(x )  the perfectly valid asymptotic series of which (19b) is the first term together 
with the same series for u0(z)  as was used in (31), one obtains an equation for z quite 
similar to (31), but without an i appearing anywhere, and with all coefficients of 
asymptotic series real! Numerically or analytically iterating this equation gives Re(Eo) to 
good accuracy when ( z (  >> 1, i.e. asymptotically, but also gives Im(eo) = O! Since asymp- 
totically Im(Eo) is zero, this is not very surprising. To check these points, and 
particularly the accuracy of an iterative solution of (31), we summed the convergent 
Taylor series for the Airy functions uo and U +  in extended precision (approximately 
thirty three decimal digits carried) in order that the error in z (due to cancellation of 
terms) be smaller in magnitude than Im z.  

Table 2 compares the result of iterating (31) numerically (which we believe is the 
same as using (32)) with the correct numerical result using convergent series. The last is 
accurate everywhere to at least twelve significant figures, and from the comparison it 
appears that for F c 2-6, (32) is too. 

Table 2. Complex eigenvalues E for the state obtained by applying an electric field to the 
bound state of a delta function potential. XR and YR have the same meaning as in table 1, 
but with approximate values now obtained from equation (32). YRR has a meaning similar 
to YR, with approximate value obtained from the first term of equation (32). 

F E XR YR YRR 
~~ 

2-8 -0.500009538345 -3.7719037579 X lo-” >12 <-12 -2.2 
2-7 -0.500038172660 -4*2998151091 X >12 <-12 -1.9 
2-6 -0*500153002629 -1.4370430689 x lo-’’ >12 <-12 -1.6 
2-5 -0.500617255201 -2.5709647509x lo-’’ 9.9 -9.2 -1.3 
2-4 -0,502578354630 -1.0332591239 x lo-’ 6.4 -3.7 -0.89 
2-3 -0.51 1571887421 -14078998100 x 2.8 -0.9 -0.4 

2-’ -0.573818709131 -9.4800178749 X lo-’ 
1 -0.60721600265 1 -0.26458 169159 
10 -0.202405226365 -2,9400778226 
10’ +5.42988029386 -20.122841005 
lo3 45.3021549684 -1 18.41399756 
lo4 283.395118950 -650.961082315 
lo5 1603.60050606 -3446.4699797 

2-’ -0336883147240 -2.2265005463 X lo-’ 1.5 -0.1 
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